A Sparse Monte Carlo Method for High-Speed, High-Accuracy Scatter Correction for Soft-Tissue Imaging in Cone-Beam CT

W. Zbijewski¹, A. Sisniega²
J. W. Stayman¹, J. Yorkston⁴
N. Aygun², V. Koliatsos³
J. H. Siewerdsen¹,²

¹Department of Biomedical Engineering,
²Department of Radiology,
³Department of Neurology,
Johns Hopkins University
⁴Carestream Health Inc.

Clinical Motivation

To develop a high-quality CBCT system for imaging of acute Traumatic Brain Injury (TBI) suitable to use at the point of care.

Stringent image quality requirements:
- Contrast: 50 HU (fresh blood)
- Size: down to 1 mm (microbleeds)
- High level of image uniformity
- Challenging for flat-panel-detector CBCT

Comprehensive framework for artifact correction
- Lag, Veiling Glare, Beam Hardening, Scatter

TBI in (non-contrast-enhanced) CT

Lag
“Comet artifact” Nonuniformity

Veiling Glare
“Blooming” from bone Nonuniformity

Beam Hardening
Streaks “Blooming” Nonuniformity

Scatter
Nonuniformity Loss of Contrast
Artifact Correction Framework

Lag
- Recursive Deconvolution
- LTI Lag Model

Veiling Glare
- Deconvolution
- Long Range PSF Tails

Beam Hardening + Scatter
- Joseph-Spital Water+Bone
- Sparse MC Scatter Estimation
- Low photons
- Angular Subsampling
- Kernel Smoothing
- 4 min/scan

Segmentation
- Tissue Density

High Quality CBCT of the Brain

Uncorrected
- Flat-Panel Detector
- Rotation Stage

Corrected
- X-ray Source
- Brain

Difference
- Hounsfield Units (HU)
 - 1.5 mm
 - 3.0 mm
 - 5.0 mm
 - 8.0 mm
 - 10 mm
 - 12 mm

High Quality CBCT of the Brain

- SDD=80 cm
- SAD=58 cm

- Ventricles
- Brain
- 8.0 mm

- X-ray Source
- Rotation Stage

- Uncorrected
- Corrected
- Difference

- HU
 - 300
 - 200
 - 100
 - 0
 - -100
 - -200

- HU
 - 350
 - 200
 - 100
 - 0
 - -100

- 3.0 mm