Predicting Noise and Resolution Properties in Tomosynthesis with Statistical Image Reconstruction

J. Webster Stayman*, Wojciech Zbijewski*, Yoshito Otake†, Jerry Prince‡, Jeffrey Siewerdsen*

*Department of Biomedical Engineering, Johns Hopkins University
†Department of Computer Science, Johns Hopkins University
‡Department of Electrical and Computer Engineering, Johns Hopkins University
Acknowledgements

The I-STAR Laboratory
Imaging for Surgery, Therapy, and Radiology
• JH Siewerdsen, W Zbijewski
• Y Otake, J Lee
• S Schafer, P deJean
• GJ Gang, P Prakash
• DJ Mirota, A Uneri, S Nithiananthan
• J Yoo, S Reaungamornrat, Y Ding

Hopkins Collaborators
• JA Carrino, A Machado
• RJ Taylor, J Prince, G Hager
• D Reh, G Gallia, J Khanna

Funding Support
• NIH R01-CA112163
Motivation

- Analysis of noise propagation
 - System design (focal spot, dose, etc.)
 - Performance Analysis (system comparisons, QA, etc.)
 - Task-based detectability Analysis - Lung Nodules, etc.
 - Selection of reconstruction parameters
 - Control of noise-resolution trade-off

- Measuring noise properties
 - Empirical studies
 - Brute force reconstructions
 - Predictors
 - Closed-form expressions or routines for predicting properties based on sample objects or data
Tomosynthesis

- **Limited-angle tomography**
 - Provides limited “depth” resolution
 - Coronal images are often preferred for diagnostics
 - Axial images illustrate the wide blurs (AP direction)

- **Statistical Reconstruction**
 - Better handling of limited-angle data
 - Accounts for non-stationary noise model
 - Typically more difficult to analyze than analytic approaches

J. Web Stayman et al. (Johns Hopkins University)
Penalized-Likelihood Properties

- Penalized-Likelihood Reconstruction
 - Forward Model:
 \[
 \vec{y}(\mu) = I_0 \exp(-A\mu)
 \]
 Discretized Object Volume
 Projected Operator
 Number of photons
 Measurements
 - Implicitly defined estimator:
 \[
 \hat{\mu} = \arg \max \Phi(\mu; y) = \arg \max \left[\log L(\mu; y) - \beta R(\mu) \right]
 \]
 Objective Function
 Log-Likelihood
 Regularization Term
 Poisson Log-Likelihood
 \[
 \log L(y; \mu) = \sum_{i=1}^{N} -y_i([A\mu]_i) - [I_0 \exp(-A\mu)]_i
 \]
 - Noise and resolution properties are
 - Technique- and Object-dependent (nonstationary noise)
 - Shift-variant (Limited-angle geometry, nonstationary noise, penalized-likelihood regularization)

J. Web Stayman et al. (Johns Hopkins University)
Predictors for Implicitly Defined Estimators

- Derived by Fessler, IEEE-TMI 1996
 - General Case:
 \[\text{Cov}\{\hat{\mu}\} \approx [\nabla^2 \Phi(\mu, y)]^{-1} [\nabla^{11} \Phi(\mu, y)] \text{Cov}\{y\} [\nabla^{11} \Phi(\mu, y)]^T [\nabla^2 \Phi(\mu, y)]^{-1} \]
 - For transmission tomography, quadratic penalty:
 \[
 \begin{align*}
 -\nabla^2 \Phi(\mu, y) &= F(\hat{\mu}) + R \\
 \nabla^{11} \Phi(\mu, y) &= -A^T \\

 F(\hat{\mu}) &= A^T D[\tilde{y}(\hat{\mu})] A \\
 \text{Backprojection Operator} \\
 \text{(Diagonal) Weighting by modeled variance} \\
 \text{Projection Operator} \\
 \text{Measurement Covariance} \\
 \text{Regularization Operator} \\
 \text{Weighted Projection-Backprojection Operator} \\
 \end{align*}
 \]
 \[
 [\text{Cov}\{\hat{\mu}\}]_j \approx [F(\hat{\mu}) + R]^{-1} \quad A^T \text{Cov}\{y\} A \quad [F(\hat{\mu}) + R]^{-1} e_j
 \]
 - This approximation
 - is closed form
 - relies only on partial derivatives of the objective function
 - depends on the object only via projections of the object
 - is still difficult to evaluate due to matrix inverses

J. Web Stayman et al. (Johns Hopkins University)
Fast Computation of Covariance Predictions

\[
[Cov(\hat{\mu})]_j \approx [F(\hat{\mu}) + R]^{-1} A^T \text{Cov}(y) A [F(\hat{\mu}) + R]^{-1} e_j
\]
\[
F(\hat{\mu}) = A^T D[y(\hat{\mu})] A
\]

- Use Fourier Approximations
 - Exploit local shift-invariance
 (Circulant matrix approximation)

\[
[Cov(\hat{\mu})]_j \approx FT^{-1} \left\{ \frac{FT\{A^T \text{Cov}(y) A e_j\}}{\left| FT\{A^T D[y(\hat{\mu})] A e_j + R e_j\}\right|^2} \right\}
\]

J. Web Stayman et al. (Johns Hopkins University)
Simulation Data

- **Geometry**
 - Source-Axis: 133 cm
 - Source-Detector: 158 cm
 - 21 Angles: -10° to 10°

- **Detector**
 - 0.5 mm pixels

- **Acquisition**
 - 500 Scans
 - Poisson Noise, 1e4 counts

- **Reconstruction**
 - Quadratic Penalized-Likelihood
 - 0.6 mm voxels, 1000^2 grid
 - 500 iterations SPS algorithm

J. Web Stayman et al. (Johns Hopkins University)
Preliminary Real Data Acquisitions

- **Geometry**
 - Source-Axis: 122 cm
 - Source-Detector: 148 cm
 - 41 Angles: -20° to 20°

- **Detector**
 - Varian PaxScan 4030CB
 - 0.388 mm pixels

- **Acquisition**
 - 200 Scans, Point and Shoot
 - 98 KVp, 125 mA, 6.3 ms/shot

- **Reconstruction**
 - Quadratic Penalized-Likelihood
 - 0.4 mm voxels, 1000² grid
 - Poisson Model – 3.7e4 counts
 - 500 iterations SPS algorithm

J. Web Stayman et al. (Johns Hopkins University)
Real Data Prediction

- **Caveats for preliminary work**
 - Data covariance is modeled using sample variance
 - Penalized-likelihood reconstruction uses a Poisson model
 - Data is scaled to equivalent number of photons to match mean variance

- **Full cascaded forward model not yet integrated**
 - Predicted data covariance based on x-ray technique, detector physics, etc.
 - Similarly, a more complete model can be used for reconstruction (non-Poisson data, etc.)
Prediction Results
Real Data

Covariance Prediction

Measured Covariance

Sample Location

NPS Prediction

Measured NPS

Horizontal Covariance Profile

Horizontal NPS Profile
Summary/Future Work

- Demonstrated prediction capability
 - Good agreement in simulation studies
 - Preliminary investigations on real data acquisitions

- Future Work
 - Refine real data validation
 - Three-dimensional reconstructions
 - Incorporate into a more general cascaded forward model
 - For input covariance
 - As part of the analysis of an entire imaging chain
 - Incorporate more sophisticated reconstruction methods