Intraoperative use of cone-beam computed tomography in a cadaveric ossified cochlea model

Emma Barker, FRCS, PhD, Keith Trimble, FRCS, Harley Chan, MSc, James Ramsden, FRCS, PhD, Sajendra Nithiananthan, MSc, Adrian James, FRCS, Gideon Bachar, MD, Mike Daly, MSc, Jonathan Irish, MD, MSc, and Jeff Siewerdsen, PhD, Toronto, Ontario, Canada

ABSTRACT

OBJECTIVES: To describe a cadaveric temporal bone model of labyrinthitis ossificans and investigate the utility of intraoperative cone-beam computed tomography (CBCT) in the facilitating cochlear implantation.

DESIGN: Cadaveric temporal bone study.

METHODS: Five cadaveric heads had cement introduced into the 10 cochleas. CBCT and a conventional CT scan were compared to assess the extent of cochlear obliteration. The cement was drilled-out (under CBCT guidance, if required) and cochlear implant electrode arrays (from 3 different manufacturers) inserted.

RESULTS: CBCT images demonstrated temporal bone anatomy and the extent of cochlear obliteration as clearly as conventional CT in all cases. Intraoperative CBCT guided drilling and facilitated electrode placement in two of five heads (3 of 10 ears). Streak-artifact from the electrodes of two devices partially obscured image clarity.

CONCLUSIONS: The obliterated cochlear model reproduced a disease-ossified cochlear both radiographically and surgically. CBCT is useful for intraoperative imaging to facilitate electrode array placement in the obliterated or congenitally abnormal cochlea.

© 2009 American Academy of Otolaryngology–Head and Neck Surgery Foundation. All rights reserved.

Abnormal cochlear anatomy or ossification of the cochlea may present a significant challenge for the correct placement of cochlear implant electrode arrays in the scala tympani. Meningitis is an increasingly rare cause of acquired severe deafness in the developed world, but by causing inflammatory changes throughout the basal, middle, and apical turns of the cochlea, it may cause fibrous obstruction or even ossification of the lumen of the cochlea. This typically involves the basal turn, although the whole cochlea may be affected. When the lumen of the scala tympani is obliterated, the electrode array may be inserted into the scala vestibuli. If both scala are obliterated, the ossified lumen can be drilled-out as far as the end of the basal turn of the cochlea. At this point, the lumen becomes inaccessible beyond the central modiolus of the cochlea and cannot be drilled-out without inappropriate damage to the cochlear nerve at the spiral ganglion. If the electrode array will not pass beyond this point, a second cochleostomy can be drilled to open the middle turn of the cochlea and electrodes placed in both turns with a device with double electrode arrays.

High-quality preoperative imaging is an important component of surgical planning for implantation of the postmeningitic cochlea. Both high-resolution CT and T2-weighted magnetic resonance (MR) imaging are valuable means of ascertaining the patency of the basal turn of the cochlea. High-resolution CT can detect established ossification of the inner ear, whereas MR imaging is a more sensitive test of cochlear obliteration and can also reveal fibrous obstruction. Although such modalities are vital to diagnosis and planning, the value of such information is somewhat limited with respect to intraoperative guidance. First, the geometric accuracy of guidance based on preoperative images, even with state of the art navigation systems, immobilization, and geometric registration, is usually limited to around two mm. In addition, the images do not indicate the position of the lumen in a severely ossified cochlea. Most importantly, preoperative images do not allow visualization of anatomic changes incurred in the course of the operation or the verification of electrode placement. Translation of high-resolution CT and MR imaging into the operating room is a topic of considerable interest, challenged by issues of imaging time, radiation dose, compatibility with the surgical environment, and cost.

Cone-beam computed tomography (CBCT) on a mobile C-arm presents a promising technology for intraoperative imaging that is finding application in a fairly broad range of interventions that range from spine surgery to brachytherapy, with guidance of ENT surgery arising as one of the most promising. It offers intraoperative volumetric im-

Received Jul 7, 2008; revised Nov 4, 2008; accepted Dec 22, 2008.

0194-5998/© 2009 American Academy of Otolaryngology–Head and Neck Surgery Foundation. All rights reserved.
ages with submillimeter spatial resolution and soft tissue visibility at low radiation dose and fairly rapid acquisition time. Spatial resolution is approximately 0.6 to 1.0 mm, depending on the choice of reconstruction filter and voxel size, and is nearly isotropic in three dimensions. Soft tissue contrast (or contrast-to-noise ratio) in CBCT approaches that of diagnostic CT but is limited by a number of physical factors, including increased levels of x-ray scatter and reduced detector efficiency. Soft tissue discrimination down to ~20 to 50 HU contrast has been demonstrated, eg, in application of CBCT for daily soft tissue targeting in image-guided radiation therapy. Future improvements in both spatial resolution and soft tissue contrast may be expected through improved detector technology and three-dimensional (3D) image reconstruction techniques. The utility of CBCT has already been demonstrated in the temporal bone. CBCT has previously been used in isolated temporal bones to demonstrate the proximity of implant electrodes to the modiolus, and the accuracy of the imaging data was confirmed histologically. The objectives of the study reported below were: 1) to develop a model of cochlear ossification in the temporal bone laboratory, and 2) to test the clinical utility of intraoperative CBCT in assisting implantation of the partially obliterated cochlea with a cochlear implant electrode array. We compared image quality and metal streak artifacts associated with three commercially available implant designs, scanning each in situ (cadavers presented the cochlear ossification model) with C-arm CBCT.

METHODS AND MATERIALS

C-arm Cone-beam Computed Tomography

The CBCT system is based on a Siemens PowerMobil (Siemens Medical Solutions, Erlangen, Germany) modified as described previously. The primary modifications include: replacement of the imaging chain with a flat-panel digital x-ray detector (PaxScan 4030CB, Varian Imaging Products, Palo Alto, CA); modification of the x-ray tube and collimators to provide an expanded field of view; addition of x-ray filtration appropriate to CBCT; motorization of the C-arm orbit; a method for geometric calibration of the C-arm orbit; computer control of the x-ray generator, C-arm motion and imaging systems; and 3D image reconstruction. All CBCT images used in this study were reconstructed from 200 projections acquired across ~180 degrees, with 0.2 mm isotropic voxel size, and a sharp reconstruction filter. The experimental setup is illustrated in Figure 1.

Cochlear Ossification Model

Five cadaveric heads were used for the study, each obtained from the Division of Anatomy (University of Toronto, Toronto ON) and used in accordance with the Anatomy Act of Ontario. No approval was required from the Institutional Review Board. Each head was scanned with C-arm CBCT (described below) and a diagnostic CT scanner (Discovery ST, GE Healthcare, Milwaukee, WI) to confirm the presence of normal temporal bone anatomy before surgical drilling.

Standard preparation for cochlear implant insertion was completed on each temporal bone with cortical mastoidectomy, posterior tympanotomy, and cochleostomy (with a 1 mm diamond burr anterior-inferior to the round window niche). After suctioning fluid from the cochlea, 0.1 to 0.3 mL of Surgical Simplex P (Stryker, MI: REF 6191-0-001) was introduced to the cochlea with a 20-gauge angiocatheter. The bone cement was left to harden for more than 15 minutes before moving the head. Following the preparation of both temporal bones, the heads were rescanned with the C-arm CBCT for visualization of the ossification model. If, after imaging, a cochlea was determined to be inadequately infused with cement, the ear was examined, re-drilled and infused with additional cement if necessary, then rescanned with CBCT. After adequate obliteration of each temporal bone, the heads were re-scanned on the diagnostic CT scanner for comparison with CBCT.

After review of the radio-images, each cochleostomy was re-drilled and the lumen of the cochlear drilled-out for cochlear implantation. Intraoperative C-arm CBCT images were taken during the procedure and reconstructed in 3D to guide drilling if required. The images were reviewed on a 3D visualization workstation before further drilling. There was no limit to the number of scans that could be requested. After the drilling was completed, an electrode array was introduced and the temporal bone was re-scanned with the electrode in position to determine the position of the array.
The surgeon completed a questionnaire after each procedure to describe the level of ossification, insertion depth, extent to which intraoperative scanning was required, and how helpful the scans were.

Cochlear Implant Electrode Arrays

Cochlear implant electrode arrays from three manufacturers were used in this study: implant one, Nucleus Contour 24 electrode (Nucleus, Cochlear Corporation, Lane Cove, New South Wales, Australia); implant two, Maestro (MED-EL, Innsbruck, Austria), and implant three, HiFocus 1j electrode (Advanced Bionics, Valencia, CA). The three arrays were expected to present different levels of metal artifact with CBCT due to differences in design and material composition. The relative proportion of platinum and iridium differs in each array. Implant three also contains titanium. To examine the severity of image artifacts, each implant was fully inserted into the cochlea of a single specimen (after cochleostomy but before ossification) and scanned with the C-arm CBCT. 3D CBCT images were reconstructed and image quality evaluated for the magnitude and perceived significance of the artifact.

RESULTS

Assessment of Cement-ossification Model

As shown in Figure 2, CBCT provided high-resolution images of the cochlea that clearly allowed assessment of the extent of cochlear obliteration. There was no significant difference in extent of obliteration as shown on CBCT as compared with conventional diagnostic CT. Structures such as the cochlear and ossicles could be qualitatively identified in CBCT images. Four of the five heads (7 of the 10 cochleas) demonstrated ossification after the first introduction of the bone cement. The remaining three cochleas appeared radiographically as nonossified and were re-explored by dissection. Two required further cement and yielded a successfully ossified model. The third cochlea appeared ossified in dissection, although this was not apparent in CT or CBCT images.

In all other cases, there was good correlation between radiographic and surgical observation of the degree of obstruction. The basal turn of the scala tympani was completely ossified in three cases and partially (basal 3 to 4 mm) in seven. One cochlea appeared overstaged by imaging (partial versus full ossification) and two understaged.

Bone cement obliteration provided a realistic model of the ossified cochlea surgically as well as radiographically (Fig 2) and presented a drilling task comparable to real disease (Fig 3).

Intraoperative CBCT

Full insertion of the electrode array was achieved in four of five heads (8 of the 10 ossified cochleas). Intraoperative CBCT was only required in one of these cases and facilitated full insertion. Ossification beyond the basal turn prevented full insertion in two cochleas despite assistance from CBCT imaging. A middle turn cochleostomy for a double
array technique was necessary in these cases. Scala vestibuli insertion was used in two of the three cochleas with complete scala tympani obstruction.

CBCT images taken after implantation clearly demonstrated the position of the electrode array within the cochlea and showed successful insertion without folding of the array. Radiologic assessment of insertion depth correlated with the surgeons' perception of the electrode position.

Figure 4 illustrates the image quality in a region of interest about the cochlea for the three implants considered. Both implants one and two exhibited significant metal streak artifacts, which diminished image quality and limiting interpretation. Implant 3 demonstrated significantly reduced streak artifacts and allowed fairly clear visualization of adjacent structures. Figure 5 shows a surface rendering of implant 3 that illustrates that the full length of the electrode can be well visualized with reformatting.

DISCUSSION

Ossification of the cochlea can provide a surgical challenge. When ossification is well established, the cochlear lumen can be difficult to identify. Even in partial obstruction, removal of soft bone to provide an adequate lumen for the electrode array can be challenging. The relative rarity of this presentation, especially with declining rates of meningitis, limits the opportunity to gain surgical experience or training in the techniques required. However, second-side electrode placement for postmeningitic patients is becoming more desirable, transiently increasing the number of ossified cochleas that require implants.14 We have developed a realistic cadaveric model of cochlear ossification with the use of bone cement, which we have found to be very beneficial in surgical training.

This model produces a heterogeneous ossification pattern that ranges from just the basal three to four mm of the scala tympani to the entire scala tympani being obliterated. This pattern of ossification is similar to that seen in labyrinthitis ossificans.15 Otosclerosis also causes ossification of the cochlea, which predominates in the first part of the basal turn. Significant apical and middle-turn ossification is uncommon in the absence of basal turn ossification.15 This rarer pattern of obstruction was not produced by our model but could be achieved by cementing the cochlear from an apical or middle fossa cochleostomy. The model is suitable for training scala vestibuli insertion and use of the double array, which are important techniques in implantation of the ossified cochlea.16,17

Imaging with CBCT and diagnostic CT provided good assessment of the completeness of obliteration in the model in four of five heads (9 of 10 cochleas). The single exception was understaged in both CT and CBCT. In a study by Young et al18 in 2000 that assessed the preoperative evaluation of ossified cochleas, 20 high resolution CT scans obtained after cochlear implantation were reviewed and compared with surgical findings and the preoperative CT scan. Ninety percent of patients required drilling of the ossified bone within the basal turn at surgery. High-resolution preoperative CT scans predicted ossification within the basal turn in 45 percent of cases (50% sensitivity). Five of six cases without radiographic evidence of ossification had positive findings at surgery. Interestingly, this study found that lateral semicircular canal ossification was a more sensitive measure to predict cochlear ossification. Immediate pre- or intraoperative CBCT would appear to be an appropriate means to detect progression of ossification, which may continue to develop after diagnostic imaging has been obtained. As mentioned earlier, CBCT demonstrates submillimeter spatial resolution and soft tissue contrast visibility, but its performance does not match that of diagnostic CT due to a variety physical limitations (eg, x-ray scatter and detector efficiency). Of course, the CBCT system described here is clearly not intended as a replacement of preoperative/diagnostic imaging, and its imaging performance appears suitable to tasks of image guidance as demonstrated here and in previous work.

We have found intraoperative CBCT to be valuable in guiding drilling and electrode insertion in the more obstructed cochlea models. We acknowledge that the questionnaire used in this study was subjective but still felt it an appropriate and valuable means to evaluate the surgeons' perspective of utility of the imaging tool. Although helpful in the simulation setting, we envisage that this could be of great benefit surgically when electrode insertion is more...
difficult, in congenitally abnormal cochlea as well as the ossified cochlea. With the C-arm CBCT system, intraoperative scanning provided detailed information with respect to electrode position and allowed an opportunity to reposition the electrode if required. Surgical navigation systems have been described for electrode placement in the ossified cochlea but do not offer the advantage of intraoperative CBCT in showing surgical changes in anatomy.

Postoperative imaging is widely used to confirm electrode placement, typically with plain radiographs. Though not routinely used in all centers, it is highly advisable in the ossified or congenitally abnormal cochlea because of the increased chance of poor placement. Interpretation of electrode position can be difficult with two-dimensional radiographs, especially in bilateral implantation where the implants overlie each other on lateral views. The advantage of CBCT over a conventional x-ray radiograph is the increased 3D volumetric information provided. The radiation dose is significantly less than diagnostic CT (in the order of 3 to 10 mGy compared with 50 to 100 mGy). In addition, CBCT is acquired over only ~180 degrees (with the x-ray tube orbiting posterior to the head) so that radiation-sensitivity of organs, including the eyes, receive even lower doses. Finally, intraoperative CBCT can be performed with a relatively short acquisition time, with volumetric images available within ~1 minute. The ability to visualize implant placement intraoperatively, in a manner consistent with time and radiation dose constraints, is particularly valuable in the ossified or congenitally abnormal cochlea.

The pattern of metal streak artifact in CT and CBCT images depended strongly on the design of cochlear implant used. This is due to the different metallic components in each case. Specifically, implant three incorporated titanium components that were significantly more CT friendly than heavier metals incorporated in other implants. The streak artifact is primarily a result of beam-hardening (ie, attenuation such that the mean energy of the x-ray beam is increased in a manner not accounted by the reconstruction algorithm) and very low x-ray transmission through such dense materials (for which the detector records a very low signal and the 3D reconstruction algorithm backprojects a very high attenuation value), each resulting in white streaks through the electrodes.

CONCLUSION

This novel cochlear ossification model provides realistic simulation of disease and is a valid simulation for research and surgical training. In addition, in the cadaveric setting, we have demonstrated the usefulness of intraoperative CBCT in the surgical management and verification of implant placement for such cases. It is envisaged that in the future intraoperative CBCT may be of clinical benefit in implantation of the ossified or congenitally abnormal cochlea. However, in order to prove this hypothesis, further studies, including a randomized controlled trial, that compare cochlear implant surgery with and without CBCT will be needed.

AUTHOR INFORMATION

From the Departments of Otolaryngology–Head and Neck Surgery and Surgical Oncology (Drs Barker, Bachar, and Irish), Princess Margaret Hospital, University of Toronto; the Department of Otolaryngology (Mr Trimble, Dr Ramsden, and Mr James), The Hospital for Sick Children, Toronto; and the Ontario Cancer Institute (Mr Chan, Mr Nithiananthan, Mr Daly, and Dr Siewerdsen), Princess Margaret Hospital, University Health Network, University of Toronto, Toronto.

Corresponding author: Emma Barker, FRCS, PhD, Department of Otolaryngology, Head and Neck Surgery, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.

E-mail address: emma.barker@uhn.on.ca.

AUTHOR CONTRIBUTIONS

Emma Barker, idea and writing; Keith Trimble, implant surgeon; Harley Chan, CBCT scientist; James Ramsden, implant surgeon; Sajendra Nithiananthan, CBCT surgeon; Adrian James, implant surgeon; Gideon Bachar, CBCT scientist; Mike Daly, CBCT scientist; Jonathan Irish, principal investigator; Jeff Siewerdsen, principal investigator.

FINANCIAL DISCLOSURES

This work was supported in part by a grant from the National Institutes of Health (NIH R01-CA-127944-02) and by the Princess Margaret Hospital Foundation.

REFERENCES

1. Labadie RF, Shah RJ, Harris SS, et al. Submillimetric target-registra-