Assessment of Image Quality in The New CT

Jeffrey H. Siewerdsen, Ph.D. (Department of Biomedical Engineering, Johns Hopkins University)

Jeff Fessler, PhD
Electrical Engineering and Computer Science
University of Michigan

Kyle Myers, PhD
Center for Devices and Radiological Health
Food and Drug Administration

Acknowledgments

I-STAR Laboratory
Imaging for Surgery, Therapy, and Radiology
www.jhu.edu/istar

JW Stayman, A Muhit, Y Otake, S Schafer, W Zbijewski
G Gang, H Dang, Y Ding, P Prakash, J Xu, S Arora
S Nithiananthan, D Mirot, A Uneri, S Reaungamornrat

Hopkins Collaborators
J Carrino, K Taguchi, M Mahesh (Radiology)
J Prince, J Lee (RadOnc)

Academic-Industry Partners
J Yorkston (Carestream Health)
R Graumann, G Kleinszig, T Mertelmeier (Siemens XP)

Disclosures and Support
Advisory Board, Carestream and Siemens
Elekta Oncology Systems
National Institutes of Health R01-CA-112163

presented at the 54th Annual Meeting of the AAPM (Charlotte NC)
Part 1: Overview

The “New CT”
- New scanner configurations (including CBCT)
- New reconstruction methods (including statistical / iterative)

Basic Technical Assessment
- Radiation dose and imaging performance
- Phantoms and standardization

Measurement and Modeling of Performance
- Noise, spatial resolution, and detectability
- Application to new technology development

Extensions and Challenges in “The New CT”
- Assumptions and limitations
- Dual-energy CT, Phase contrast CT, etc.
- Iterative / statistical reconstruction
Basic Technical Assessment

Radiation Dose
Farmer chamber + 16 cm cylinder
Short-scan protocols

Quantitative Accuracy
Electron density inserts
Comparison to MDCT

Contrast Resolution
Low-contrast tissue inserts
SDNR versus kVp, mAs

Spatial Resolution
Line-pair pattern (subjective)
Modulation transfer function (MTF)

“Clinical” Image Quality
Anthropomorphic phantoms
Expert readers

Basic Technical Assessment

Radiation Dose
Farmer chamber + 16 cm cylinder
Short-scan protocols

Basic Technical Assessment

Quantitative Accuracy
Electron density inserts
Comparison to MDCT
Contrast Resolution
Low-contrast tissue inserts
SDNR versus kVp, mAs

Spatial Resolution
Line-pair pattern (subjective)
Modulation transfer function (MTF)

"Clinical" Image Quality
Anthropomorphic phantoms
Expert readers

Spatial Resolution
Line-pair pattern (subjective)
Modulation transfer function (MTF)

"Clinical" Image Quality
Anthropomorphic phantoms
Expert readers

Basic Technical Assessment

"Clinical" Image Quality
Anthropomorphic phantoms
Expert readers (sanity check)

Basic Technical Assessment

Radiation Dose
Farmer chamber + 16 cm cylinder
Short-scan protocols

Quantitative Accuracy
Electron density inserts
Comparison to MDCT

Contrast Resolution
Low-contrast tissue inserts
SDNR versus kVp, mAs

Spatial Resolution
Line-pair pattern (subjective)
Modulation transfer function (MTF)

"Clinical" Image Quality
Anthropomorphic phantoms
Expert readers (sanity check)

Checking for Pulse…

Why don’t we use a 10 cm pencil ionization chamber to measure dose in cone-beam CT?

0% 1. The dose is too high.
0% 2. The dose is too low.
0% 3. The field is longer than the chamber.
0% 4. CBCTDI is a clumsy acronym.
0% 5. We do.
Why don’t we use a 10 cm pencil ionization chamber to measure dose in cone-beam CT?

1. The dose is too high.
2. The dose is too low.
3. The field is longer than the chamber.
4. CBCTDI is a clumsy acronym.
5. We do.

AAPM Task Group 111
www.aapm.org/pubs/reports/ (Feb 2010)
Measuring the Noise

Noise-Power Spectrum

\[NPS(f_x, f_y, f_z) = \frac{a_x}{L_x} \frac{a_y}{L_y} \frac{a_z}{L_z} \langle |DFT\{\Delta I(x, y, z)\}|^2 \rangle \]

\[\sigma^2 = \iiint NPS(f_x, f_y, f_z) df_x df_y df_z \]

\[\sigma \propto \sqrt{\frac{1}{D_0}} \frac{k_E}{\eta} \frac{1}{a_{xy}^3} \frac{K_{xy}}{a_z} \]

Barrett, Gordon, and Hershel (1976)
Measuring the Noise

Noise-Power Spectrum

Axial Plane (x,y)

\[NPS(f_x, f_y, f_z) = \frac{a_x a_y a_z}{L_x L_y L_z} \langle |DFT(\Delta I(x,y,z))|^2 \rangle \]

Sagittal Plane (x,z)

\[NPS(f_x, f_y, f_z) = \frac{a_x a_y a_z}{L_x L_y L_z} \langle |DFT(\Delta I(x,y,z))|^2 \rangle \]
Measuring the Noise

Noise-Power Spectrum

Axial domain \((f_x, f_y)\)
“Filtered-ramp”
Mid-Pass

Longitudinal domain \((f_z)\)
“Band-limited”
Low-Pass

Low-frequency NPS
\[\text{NPS}(f_x, f_y) \propto f \]
\[(\alpha \text{NPS} / df) \propto \text{NEQ}(0) \]
\[\text{NPS}(0,0,0) \neq 0 \text{ (aliasing)} \]

Units

\([\text{signal}^2] [\text{Hz}^{\text{domain}}] \]
\[[\mu]^2 [x] [y] [z] \rightarrow (\text{HU}^2)(\text{mm}^3) \]
\[\rightarrow (/\text{mm}^2)(\text{mm}^3) \]

1. Hanson, Med Phys 1979
2. Kijewski and Judy, Phys Med Biol 1987

Sanity Check

What is wrong with analyzing the local NPS from a single axial slice in cone-beam CT?

0% 1. The magnitude is wrong.
0% 2. The units are wrong.
0% 3. Ignores correlation in the z direction.
0% 4. Would overestimate the NEQ.
0% 5. All of the above.
Sanity Check

What is wrong with analyzing the local NPS from a single axial slice in cone-beam CT?

1. The magnitude is wrong.
2. The units are wrong.
3. Ignores correlation in the z direction.
4. Would overestimate the NEQ.
5. All of the above.

Modeling the Noise

2D PROJECTION DATA

- Incident Quanta $q_0(E)$
- Scintillator
- Detection
- Gain, Blur
- Flat-Panel Detector
- Conversion
- Aperture
- Electronics
- Sampling
- Noise

Cunningham et al. (1994)
Siewerdsen et al. (1997)
Zhao et al. (1997)
and others

$S_{proj}(f_x, f_z)$

presented at the 54th Annual Meeting of the AAPM (Charlotte NC)
Modeling the Noise

\[d^2 = \iiint \frac{MTF^2(f) W_{\text{task}}(f)}{NPS_Q(f)} + S_B(f) \, df \]

Generalized NEQ
- Quantum Noise
- Background Noise
- Focal Spot, Scatter
A Dedicated Musculoskeletal Extremity Scanner

Detectability Index (d')

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

High-Frequency Task (Edge Detection)

Low-Frequency Task (Muscle-Fat)

Example

Pixel Size (mm)

Magnification

0.1
0.2
0.3
0.4

0.1
0.2
0.3
0.4

Zbijewski et al. Med Phys 2011
Prakash et al. Med Phys 2011

A Dedicated Musculoskeletal Extremity Scanner

0.194 mm pixels
0.388 mm pixels

1x1 Readout
2x2 Binning

8/6/2012

presented at the 54th Annual Meeting of the AAPM (Charlotte NC)
Assumptions and Limitations

For Example: Stationarity

Axial $\mu(x,y)$

Noise (stdev) $\sigma_{\mu}(x,y)$

Angel Pineda et al.
Modeling Noise Stationarity

Example
CSA model for NPS
H$_2$O cylinder (16 cm)
No bowtie filter
Polyenergetic beam
90 kVp
1 mGy
360 views
360° orbit
FBP

Extensions of the Models

Non-Linear Reconstruction Algorithms

For example: Penalized Likelihood

Forward model:

For example: Penalized Likelihood

Forward model:

\[\bar{y}(\mu) = I_0 \exp(-A\mu) \]

Discretized Object Volume

Number of photons

Log-Likelihood

Measurments

Objective Function

Projection Operator

Regularization Term

Log-likelihood estimator:

\[\hat{\mu} = \text{argmax} \Phi(\mu; y) = \text{argmax} [\log L(\mu; y) - \beta R(\mu)] \]

Extensions of the Models

Non-Linear Reconstruction Algorithms

For example: Penalized Likelihood

Forward model:

\[\bar{y}(\mu) = I_0 \exp(-A\mu) \]

Discretized Object Volume

Number of photons

Log-Likelihood

Measurments

Objective Function

Projection Operator

Regularization Term

Log-likelihood estimator:

\[\hat{\mu} = \text{argmax} \Phi(\mu; y) = \text{argmax} [\log L(\mu; y) - \beta R(\mu)] \]

Noise and spatial resolution are object-dependent and spatially variant.
However, local covariance properties can still be estimated:

\[\text{Cov}[\hat{\mu}] \approx [F(\hat{\mu}) + R]^{-1} A^T \text{Cov}[y] A [F(\hat{\mu}) + R]^{-1} \]

J Web Stayman et al. AAPM (2010)
Example
Estimator model for NPS
H₂O ellipse (32x16 cm)
No bowtie filter
Mono-energetic beam
H₂O ~0.018 mm⁻¹
1 mGy
360 views
360° orbit
PL reconstruction
Quadratic penalty
I₀ = 5x10⁵
β = 5x10⁻⁷

Modeling Noise Stationarity

Example
Estimator model for NPS
H₂O ellipse (32x16 cm)
No bowtie filter
Mono-energetic beam
Extensions of the Models
2D, 3D, Dual-Energy, Phase Contrast, …

Waiter, Check Please…

CT image noise is non-stationary:

0% 1. due to variation in N_{photons} at the detector.
0% 2. due to a finite number of projections.
0% 3. due to the cone-beam effect.
0% 4. but we can still model the local NPS.
0% 5. All of the above.

Extensions of the Models

- DE Radiography
- Tomosynthesis
- Cone-Beam CT
- DE CBCT
- Phase Contrast

Richard et al.
Ducote et al.
Zhao et al.
Glick et al.
Tward, Gang et al.
Fredenberg et al.
Tang et al, Chen et al.

Waiter, Check Please…

CT image noise is non-stationary:

0% 1. due to variation in N_{photons} at the detector.
0% 2. due to a finite number of projections.
0% 3. due to the cone-beam effect.
0% 4. but we can still model the local NPS.
0% 5. All of the above.
CT image noise is non-stationary:

1. due to variation in N_{photons} at the detector.
2. due to a finite number of projections.
3. due to the cone-beam effect.
4. but we can still model the NPS.
5. All of the above.

CT Imaging Performance

The System Design Perspective

Technical Assessment
Must account for complexities in **scanner configuration**
 - For example, Cone-Beam CT:
 - Dose measurement
 - Fully 3D spatial resolution and noise characteristics
Must account for complexities in **reconstruction methods**
 - For example, statistical / iterative reconstruction
 - Nonlinearity: spatial resolution dependent on signal
 - Nonstationarity (may be better or worse than FBP)
Must acknowledge **assumptions and limitations of the metrics**
 - For example: LOCALITY

Technology Development
Strengthened by a foundation in imaging physics
Accelerates translation to clinical application

Extension to New Techniques
New modalities (PCXD, PCCT, etc.) and algorithms (model-based)
New challenges for modeling and measurement standards