Self-Calibration of Cone-Beam CT Using 3D-2D Image Registration

Sarah Ouadah1
J. Webster Stayman1
Grace Jianan Gang1
Ali Uneri2
Tina Ehtiati3
Jeffrey H. Siewerdsen1,2

1. Department of Biomedical Engineering
2. Department of Computer Science
3. Siemens Healthcare

department of biomedical engineering

Acknowledgements

The I-STAR Lab
Imaging for Surgery, Therapy, and Radiology
http://istar.jhu.edu

Collaborators
Dr. Adam Wang, Johns Hopkins University
Dr. Yoshito Otake, Johns Hopkins University
Dr. Kevin Royalty, Siemens, AX

Funding Support
National Institutes of Health R01-EB-017226
Siemens Healthcare, AX Division
Geometric Calibration

Describes system geometry
- 1 set of parameters per projection
- 6 - 9 degrees of freedom (DOF)

Performed with specialized phantoms
- BB spiral\(^1\), ellipses\(^2\)
- Performed periodically

Essential for accurate image reconstruction
- Errors result in image artifacts

1. Navab, U.S. Patent No. 5,923,727, 1999
2. Cho et al, Med Phys, 2005

Uncertainty in Geometric Calibration

Out-of-date geometric calibration
- Geometric error due to changes over time

Irreproducible source-detector orbit\(^1\)
- Vibration, jitter
- C-arm flex under gravity

Un-calibrated systems
- Unknown geometry

Task-driven imaging\(^2\) → Non-circular orbits
- Robotic C-arm systems capable of general orbits
- Trajectory can be driven by a particular imaging task
- Difficult to obtain an accurate calibration
- Difficult to anticipate all possible trajectories

1. Daly et al, Med Phys, 2008
2. Stayman & Siewerdsen, Fully 3D, 2013
Solution Concept: 3D-2D Registration

Method:
Previously acquired 3D image (μ_{moving})
Register to 2D projection data (p_{fixed})
Determine the system pose (T,R) for each projection view (N_{proj})
Solve transformation parameters representing the system geometry.

Self-Calibration

3D-2D Registration

3D CT Volume
2D Projections

Similarity Metric
NGI

Transformation 6 / 9 DOF
CMA-ES Optimization 6 / 9 DOF
Binning
Population Size
Max evaluations
Tolerance

Final Poses 3x4 Projection Matrices
3D-2D Registration

3D CT Volume

2D Projection

3D-2D Registration

3D CT Volume

2D Projection

Siddon Forward Projector
3D-2D Registration

- 3D CT Volume
- DRR
- 2D Projection
- Similarity Metric

3D-2D Registration

\[NGI(I_F, I_M) = \frac{G(I_M, I_F)}{G(I_F, I_F)} \]

\[G(I, I) = \sum_{i,j} m(i,j)w(i,j)\min(|\nabla p_1(i,j)|, |\nabla p_2(i,j)|) \]

- Optional Mask
- Weighting based on inner product of gradient vectors
- Robustness against strong gradient mismatch

Otake et al, Phys Med Bio, 2013

3D-2D Registration

- 3D CT Volume
- DRR
- 2D Projection
- Similarity Metric

CMA-ES Optimization

- Binning = 3
- Population Size = 100
- \(\Delta(T, R) = 0.1 \text{ mm/deg} \)
- Max evaluations = \(10^6 \)

Hansen & Ostermeier, Evol Comput, 2006
Experimental Methods

1. Feasibility Cylinder Phantom, 6 DOF vs 9 DOF
2. Robustness Anthropomorphic Head Phantom
3. Translation Robotic C-Arm System (Zeego)
4. Application Task-Driven Imaging (Non-Circular Orbit)
Experimental Methods

1. Feasibility
Cylinder Phantom, 6 DOF vs 9 DOF

2. Reproducibility
Anthropomorphic Head Phantom

3. Translation
Robotic C-Arm System (Zeego)

4. Application
Non-Circular Orbit (Task-Driven Imaging)

Circular Orbit
360 projections, 360°
70 kVp, 227 mAs

X-Ray Source
Flat Panel Detector
Cone-Beam CT Imaging Bench

1. Cylinder Phantom
Re-Projection Error

Calibration Method
Reference:
6 DOF Self-Cal:
9 DOF Self-Cal:

RPE
0.83 ± 0.01 mm
0.70 ± 0.002 mm
0.71 ± 0.005 mm

Re-Projection Error
3D Point Cloud ➔ Variance ➔ FWHM (RPE)
1. Cylinder Phantom

Reference Calibration
- Wire PSF
 - FWHM = 0.80 ± 0.001 mm

6 DOF Self-Calibration
- FWHM = 0.79 ± 0.01 mm

9 DOF Self-Calibration
- FWHM = 0.80 ± 0.01 mm

Experimental Methods

2. Robustness
Anthropomorphic Head Phantom

Circular Orbit
- 360 projections, 360°
- 70 kVp, 227 mAs

Cone-Beam CT Imaging Bench
2. Anthropomorphic Phantom

Re-Projection Error

RPE
Reference Calibration 0.84 ± 0.06 mm
Self-Calibration 0.60 ± 0.06 mm

FWHM = 0.81 ± 0.01 mm

2. Anthropomorphic Phantom

Reference Calibration

Self-Calibration

FWHM = 0.81 ± 0.02 mm
Experimental Methods

Circular Orbit
496 Projections over 200°
87.2 kVp, 229 mAs

X-Ray Source
Flat Panel Detector

Artis Zeego, Siemens Healthcare

3. Translation
Robotic C-Arm System (Zeego)

3. Robotic C-Arm

Re-Projection Error

<table>
<thead>
<tr>
<th>Calibration</th>
<th>RPE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0.80 ± 0.12 mm</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Self-Calibration</td>
<td>0.70 ± 0.12 mm</td>
<td></td>
</tr>
</tbody>
</table>

FWHM = 0.70 ± 0.04 mm

FWHM = 0.65 ± 0.03 mm
3. Robotic C-Arm

Reference Calibration

Self-Calibration

Experimental Methods

4. Application
Task-Driven Imaging
(Non-Circular Orbit)

Non-Circular Orbit
360 projections, 360°
70 kVp, 227 mAs

Flat Panel Detector

Cone-Beam CT Imaging Bench
4. Non-Circular Orbit

Saddle Orbit:
ΔZ: ± 25 mm
ΔY: ± 50 mm

4. Non-Circular Orbit

Reference Calibration
FWHM = 0.83 ± 0.01 mm

Self-Calibration
FWHM = 0.81 ± 0.01 mm
Conclusions

Self-Calibration using 3D-2D registration
Geometric calibration equivalent to (or better than) conventional pre-calibration methods

Potential advantages and utility
- Robustness to out-of-date calibration
- Detection of calibration errors (QA)
- Systems with non-reproducible orbit and/or vibration
- Improve upon (supposedly) well calibrated systems

Enables advanced 3D imaging methods
- Task-driven imaging → Non-circular orbits
- Model-based 3D image reconstruction

Future Work
- Robustness to deformable motion
- Basis for patient motion correction in CBCT
- Evaluation in clinical image data